
, -AuSue 5I II WISCONSIN %SIIV MAOISQI MATHEMATICS RESEAPCH CENTE R I/Q 12/1
A POSTERIOR! ERROR bOUNDS FOR Tl.Q PQINT ecu’cAw’ VALUE PROBLEMS——Cyccu)
JAN 76 • ~cocn C.AAG29 75—C~ QO2ie

uNCLASSIFIED ~~C— TSR 1SZ5

I
~~~~~~~~~~~

p_
_____

• 

_ _ _

~iIEPCflflrTqL1flNF.•fl~flD!ii
I



H ‘ 1~ I— 111121 I2~.
I.U L H~~~~~

_ _  

2.2

I ~ 
I~

11111’ .25 fl~fl
j .4 

~
MICROCOPY RESOLUTION TEST CHART

NATIONA L NIJA T AU Of S IAN OAROS - 1963 -A



FOR ~UK i HER ‘1~N iL~
C Technical 4 u a . 1825

A POSTERIORI ERROR BOUNDS FOR TWO-POINT
BOUNDARY VALUE P1~)BLEMS ~ 

-

&(~

—.

~~~~~~~~~~~~

~~

Mathematics Research Center
University of Wisconsin —Madison
610 Walnut Street

adison , Wisconsin 53706
/ I / 1 ~)Jan~~~~’ ~~7 8 ~ t’ : ‘

~ji JJ (Received Nove~~er 25 , 1977)

~~~I9Th ll
Approved for public release
Distribution unlimit ed

Sponsored by

U. S. Army Research Office
P .O. Box 12211
Research Triangle Park ~
North Carolina 27709

_________ 
_ _ _ _  _ _  _ _  _ _ _



UNIVERSITY OF WI SCONSIN - !IADISON
MATMENATICS BESEARCH CENTER

A POSTERIORI ERROR BOUNDS FOR TWO-POINT BOUNDARY VALUE PROBLEMS

Gershon Kedem

Technical Suuui~ary Report *1825
January 1978

I’IBSTRACT

Consider a general Two-Point Boundary Value Problem (TPBVP) :

y t (t) = f( t ,y) a < t < b

B
1
y(a) + B2

y (b )  = w

where f :R ~~~ ~ R’~, f € C2
, B

1 
and B

2 
are nxn matrices and w ~ R~ .

it is shown how one can bound a posteriori the error made in the numerical

solution of the TPBVP. The error bounds obtained are rigorous and include the

truncation and the roundoff error. In addition , the computations establish

the existence of solutions to the TPBVP.

N’unerical schemes are developed for the case where f(t ,y) is a polynomial

in t and y . Examples are given of computational existence proofs for

problems where analytical existence proofs are not known.

Key Words: Two-Point boundary value problem , 
~a posteriori , error bounds

I)ttS $$IISI

AMS(t’~DS) Subject Classification 65L10

Work Unit No. 7 -Numerical Analysis

_ _  

LUlL u.m

~1L
Sponsored by the United States Arz~’ under Contract No. D~AG29-75-C-QO24.



SIGNIFICANCE AND EXPLANATION

Consi.k~r a general two—point boundary value problem

y ’ (t) = f(t ,y(t)
a < t < b  (1)

B1
y ( a) + B2

y ( b )  = w

where y ( t ) ai-id f ( t , y ( t ) )  are n dimensional vector—valued functions ,

B 1 an d B2 are n x n  matrices and w is n vector.

Many problems in physics , chemistry and engineering can be put into the

above form. In most cases , it is impossible to write down explicit formulas

for solutions of two—point boundary value problems . Moreove r , many times it

is impossible to assert the existence of a solution or to know whether the

equations have one , many or an infinite number of solutions.

Although there are many numerical methods that enable one to compute

numerical approximations to solutions of equation ( 1) ,  it is , in general

impossible to tell a priori how close the numerical solution is to a true

solution .

The literature holds examples of two-point boundary value problems that

do not have a solution but the equations arising from the numerical approxima-

tion scheme do have solutions. Also , there are examples of numerical solutions

that at first were believed to be good approximations but later were proved

to be wrong.

We developed a numerical scheme that enables one to take a n umerical

solution to equation (1) and with the aid of that solution to compute , a

posteriori , guaranteed error bounds. That is , one can compute how fa r  the

numerical solution is from the true solution.

The method described in this report is applicable in the cases where

f(t ,,’) is a polynomial in t and y . Although this  is a serious restr ict ion,

many problems that arise in applications do fall into that category . We also

give some indication of how one would extend our procedure to more general

types of two-point boundary value problems , that is , cases where f(t,y)

is not a polynomial in t and y

The responsibility for the wording and views expressed in this descriptive
summa ry lies with NRC , and not with the author of this report.



CHAPTER 1

A POSTER IORI ERROR BOUNDS

FOR TWO-POINT BOUNDARY VALUE PROBLEMS

1.1 Introduction

Consider a general Two-Point Boundary Value Problem (TPBVP )

y ’ (t )  = f ( t , y(t ) ) 0 <  t < 1
(1)

B
1
y(O) + B

2
y ( l )  = w

where f :Rn+l 
-
~

- R~ , f € C
2 and B

i~ 
B
2 

are nxn matrices, w e R
n
.

Unlike Initial Value Problems where the theory assures us that

for a large class of equations there is a unique local solution ,

TPBVP can have one or many or no solutions at all. Unless one makes

very strong assumptions on the function f in equation (1) the ques-

tion whether a solution does exist or whether it is unique is hard to

answer. Many times numerical solutions to TPBVP are computed without

establishing the existence of a solution . The error analysis of

numerical methods for solving TPBVP assures us that if a solution

does exist and is locally unique and the discretization parameters are

small enough , there is a locally unique numerical solution which is

close to the true solution (see Keller (22] , de Boor and Swartz [ 2] ,

Krasnoselskii et al (24]). The above theory is unsatisfactory for

two reasons : a) It is hard if not impossible to prove by analytic

methods that there is a solution. b) In general it is impossible to

know how small to make the discretization parameters.

Several numerical methods for estimating the error made in the

t numerical solution of differential equations are known. The most

Sponsored by the United States Army under Contract No. DAAG29—75-C—0024.

.----
~~~~~ ~~. -.~~~ ~~_r*~~~~,-. 

- -
- - -

famous one is Richardson Extrapolation to the Limit approach : If

the equations and the solution are smooth enough , one can show that

the error admits an expansion of the form

r j k+l
y - y (x) = 2. h 9~,(x) + O(h).n n j n

:j=p

Based on this expansion one can get asymptotic error estimates

and one can improve the solution . In [47], Pereyra gives a survey of

such methods. Henrici(see [16]) points out that one can solve numer-

ically the differenti~ 1 equation satisfied by the dominant error term

in order to get a good estimate of the error. Some methods like the

Runga-Kutta-Fehlberg methods have error estimates built in. In [46],

Zadunaiski describes another type of method. He interpolates the

numerical solution by a local polynomial. Then, using that poly-

nomial , he constructs a pseudo—problem for which the solution is

known. He estimates the error in the numerical solution by computing

the error made by the integration process in solving the pseudo-

problem. More recently Babuska and Rheinboldt [1] analyzed some

aposteriori error estimates for TPBVP of elliptic type solved by the

finite element method.

Numerical estimates usually work very well. However.these are

only estimates. Numerical estimates can always fail. It was pointed

out by Lyness and Kaganove in their paper “Comments on the nature of

Automatic Quadrature Rout ines” [25] , that numerical schemes which

estimate the error by considering function values at finitely many

points inevitably may fail , even in the simplest case y’(t) = f(t),

that is integration.

—2—

Therefore, it is desirable to construct numerical schemes that

wil l enable one to take a numerical solution and bound aposteriori

the error in that solution. By doing so, one also proves existence

of a solution . We would like to stress that we are not concerned

with error estimates. We are interested in computing guaranteed error

bounds. Error bounds are more expensive than error estimates, but in

many cases the ability to talk about the accuracy of the numerical

solution with certainty is important.

Many times the existence of a solution to a single second order

Boundary—Value problem with separated boundary conditions can be

established by the “Shooting Method” : One can find two values of the

missing initial condition such that the solution of the initial

value problem with one initial value will “h i t” above the end

condition and the other below it. Since the solution of the differ-

en tial equation is continuous as a fun ction of the initial conditions

(see Coddington and Levinson [8]), there must be a value of the mis-

sing initial conditions that will make the solution “hit” the right-

hand side exactly. However, the above idea cannot be used to analyze

more general problems.

A very general approach to the question of existence and apos-

ten on error analysis was suggested and analyzed by L. V. Kantorovich .

He generalized Newton ’s method for solving nonl inear equations to a

general method of solving nonlinear operator equations in Banach

spaces.

—3—

In order to describe Newton ’s method in Banach space and

Kantorovich ’s theorem we f i rs t describe the following concepts~~.

Let X and Y be Banach spaces and L be a bounded linear operator

from X to Y. The induced operator norm of L is defined by

II LII = sup II Lx~~l i x lI~=l

Let B (X , Y) be the set of all bounded linear operators from X to

Y. If we define addition and scalar multiplication in B (X ,Y) by

V = (W + Z) Vx = Wx + Zx V x s X

V = c~Z Vx = czZx V x € X

then it is easy to see that V is a bounded linear operator from X

to Y and that B(X,Y) is a vector space. It is well known that

B (X ,Y) is itself a Banach space . (see [2 0]) .

Let P be an operator from an open set D C x into Y . If

there is a bounded linear operator L € B (X ,Y) such that

p (x
0

+u) - P (x 0) - LU II Y
lim — = 0 ,

I I u l I ,(*o II u I I~
then P is said to be differentiable at x0

and the bounded linear

operator P’ (x0
) = L is called the Frechet derivative of P at x0.

If P is differentiable at every point of the open set D then the

mapping P’ : x
0
1+ P1 (x

0
) is an operator from D X to B (X ,Y)

and therefore one can talk about the derivative of such an operator .

That derivative is called the second Frechet derivative of P, at x
0
,

and is denoted by
__

P” (x
0
).

a full treatment see Kantorovich and Akilov [20] and also Rall
[32] .

— 4—

_ - ~—“--- —. .- -
- - - ___ 1_

Note that P ” (x
0

) € B(X,B(X,Y)) and for u,v € X,

P” (x
0

) lu] € B(x ,y) and (P” (x
0
) [u)) [v] € Y

The i nduced operator norm of P” (x
0
) is:

P ” (x
0

) = su~ sup iI (P”(x0) [u]) [v] 1
lu ~=l li v II~=1

Example:

Equation (1) can be put in the above framework. Let X1 be the

space (Cl [O ,l])r~ and X
2

= (C [0,l)) ’~ X R
n
, that is :

= {flf . € C
1
[0 ,l] , i =

= If . € C[O ,l] , P Rn)

A norm on X
1

is (for example)

II f II max [max (sup I~ . (t) , sup
~

(t) IX1 l < i < n 0 < t < l O < t < l

A norm on X
2

is (for example)

max(max [sup (l f . (t)l)] , max i P ~~i)
l < i < n 0 < t < l l < i < n

It is not hard to show that with the above definitions X
1

and X
2

are Banach spaces.

Let P : X
1 ~

be defined by:

(x ’(t) — f(t,x(t))
P(x) (t) (J 0 < t < 1

~~ B1
x(0) + B

2
x(l) — w I

Clearly solving for P(x) = 0 is equivalent to solving equation (1).

P’ (x
0
) is the linear operator defined by

t v’(t) — f (t,x (t))v(t) \
P’(x

0)v(t)=(
X 0

t~ 31v(O)+ B2v(l) J
where f(t ,x

0
(t)) is the matrix

(f,(t,x (t))~~~1 0 ,
~x . J . — -

—5—

~~-~~~_ _ _ _

The second Frechet derivative is given by:

(f (t ,x (t))v(t))u(t)
P” (xe

) [v ,ul (t) =
XX 0

),
0 t < 1

f~~
2f.(t,x (t)) \ ~1 1 0 Iwhere f (t,x Ct ”) is the tensor i I . Note

xx 0 ~~~~~~ I .
j k /i ,j,k=l

that the norm ut X
1

involves the first derivative and y-x~ is

small only if sup Iy(t)—x (t) and sup ly ’ (t)—x ’ (t) I are small.
0<t-<1 0<t<l

We are now rea c~y to describe Newton ’s method in Banach space:

Recall the regular Newton’s method : One is try ing to find x~ such

that f(x
~
) = 0. Assume that we have x

0
which is an approximation

to x,,. We try to find x
1

which is a better approximation to x
~

We write ,

o = f(x
~
) = f (x

0
+L~xi = f(x

0
) + f’ (x~)~ x + Q(~x)

If one neglect the term Q (A x) and solve for Ax one gets

Now if x1 x0 + A c the n x1
= x

0
—f(x

0
)/f’ (x

0
) , or

in general xk÷l x
k

f(x
k

)/ f (x.K
) which is Newton ’siteration scheme.

Following the same reasoning one can generalize the above proce-

dure to operator equations in Banach space. Let x
0

be an approxi-

mation to x ,,. Assume that P is twice continuously differentiable.

We wri te

0 = P (x~
) = P(x

0
+Ax) = P(x

0
) + P’ (x

0
)Ax + Q (Ax)

By d’~~inition of Frechet derivative, P’ (x0
), lim I! Q (Ax) II = o

ii A x il +0 Ax

So if IA xii is sufficiently small one can neglect the operator

Q(Ax) and solve for Ax ,

Ax = —[P’ (x
0
)]

1
P(x

0
),

assuming of course that [P’ (x
0
] 1 exists. Again the general scheme

—6-

—1
15 X

k l
= X

k
- [P’ (x

k
)] P (x

k
).

A n a l y z i n g the above scheme Kantorovich proved the fol lowing re-

markable theorem :

Theorem: (Newton ’ s method in Banach space).

Let X and V be Banach spaces and let P:D C x ~ Y (D open

set) be a nonlinear operator. Assume that P c C
2
(X,Y). Let

X and assume the following :

—l
a) [P’ (x

0
)] exists

b) Ii x
1

—x
0 11 < n where x

1
= x

0
— [P’x

0
))

1
P(x

0
)

[P’ (x0)] 1iI < B

d) fi P ” (x) K for If x — x 0 1I < r

e) h = n. B K < 4
f) r > r

0 = h

then P (x) = 0 has a unique solution x~ in the ball x-x0 11 <

and the iteration scheme Xk 1 x
k

— [P’(x
k
)]

1
P(x

k
) will converge

to

The above theorem enables one to prove existence by first com-

puting an approximate solution, then by computing the relevant con-

stants one can establish the existence of a solution nearby . In

addition , estimate (f) gives bounds on the difference between the

computed solution and the exact solution. Although the theory has

been known for more than twenty years it has been used very little

in order to establish the existence of solutions to continuous prob-

lems like TPBVP. After a moment of thought one realizes that the

actual application of the above abstract results to TPBVP is not

trivial. A careful formulation of the problem has to be made .

-7-

—~~~~~~~~~~~~~

..

In order to compute a rigorou bound on the error one has to be

able to :

a) Compute a reasonable bound on [F’(x 0)] 1II
b) Compute a good bound on x

1
-x
0 11

c) Compute a bound on sup IIII x-x~~ < r

First , one has to choose the spaces X and V . A natural choice is

and X
2

of the example. However, since the norm in X
1

depends

on the first derivative and one needs to make Ti = II x1-x0 11 small ,

the above choice implies that x
1
(t) has to be a good approximation

to x,,(t). This is a very stringent requirement. Therefore,it is

desirable to find a formulation and a space X where the norm of

x depends on function valur~s only. Even in that case bounding the

norm requires bounding the range of functions; hardly a trivial mat-

ter. (See Moore [29] , and the references there.) Second , computing

a bound on F ’ (x 0) 111 implies bounding of norm of the Green ’s

function of a f i rs t order , linear , two—point boundary value problem.

Theoretical bounds for such a problem are usually impossible to ob-

tain so one has to devise a computational scheme for getting such a

bound . Third, one has to compute Ti and K. This computation takes

bounding the range of one and two dimensional functions on a finite

domain. This is not an easy task. (See Moore [29] and the refer-

ences there.) All of the above gets even more complicated by the

fact that computers compute with only a finite number of digits and

every arithmetic operation introduces some round off errors. If one

wishes to prove existence of a solution one has to take that point

into account.
S

—8—

-
- --. - - -~~---- —

The residuals will be very small functions that are the differ-

ence between almost equal but not small functions. Therefore, it is

impossible to decide apriori how many digits one needs to use in

order to be able to neglect the effect of round-off error.

Several authors have suggested various formulations and compu-

tational schemes that enable one to compute the constants of

Kantorovich ’s theorem. However, so far, the methods that are sug-

gested in the literature have some difficulties. Talbot [37] has

constructed a method that enables one to us e a modified version of

Kan torovich ’s theorem to bound the error for single second order

boundary value problem y ” = f(t,y) where the right hand side does

not depend on y’. In order to take the truncation and the round-

off error into account Talbot uses Interval Analysis techniques

(see Moore [301) . He computes an interval valued function that

contains the exact Green ’ s function in its range . By computing a

bound on the range of the interval function, he is able to compute

a bound on F’ (x
0
)
~~~I I . He also uses interval techniques to com-

pute bounds on x0-x1 II and Ii F”~j . His approach enables him to

compute guaranteed global bounds on the error. The major disad-

vantage of his method is that it requires large memory storage space.

A lso, as pointed out by Talbot himself, it is desirable to solve a

more general class of problems. McCarthy and Tapia [26] have sug-

gested a different approach. They convert a single , polynomial ,

second order , two-point boundary value problem into an equivalent

Volterra equation and use a modified version of Newton ’s method,due

to Tapia, to compute error bounds on the approximate solution.

—9—

~

.— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - _______



Their method also suffers from some difficulties. The bound on

II F’(x0)~~~ is given in terms of where L is a bound on the

norm of a certain fu’iction. This bound is very pessimistic. For

L = 20, eL > 10
8
. Such a large bound makes the possibility of get-

ting realistic 3rror bounds, or error bounds at all , rather small.

Also the autho’-s do not consider the effects of round-off error at

all.

Roberts and Shipman [34] have suggested to convert the problem

of two-point boundary value problem to a set of algebraic equations

by looking for the missing initial conditions. Then, they solve

that set of equations by the “shooting method” . However, they do

not consider the , error made by the process of solving the initial

value problem and therefore, their approach cannot be used to get

rigorous error bounds.

In [12] Cruickshank and Wright suggested a method for bounding

II F ’ (x
3
)
1

II for 2mth order single TPBVP . They use the Green ’s

function of the 2mth derivativo plus boundary conditions to convert

the TPBVP into an equivalent Fredholm integral equation of the

second kind. They use Kantorovich’s Theory of Approximation Methods

(see [20], Ch. XIV), to relate the norm of (I—k)
1 to the inverse

of the matrix that one gets by using polynomial collocation method

to solve the TPBVP. Their approach can also be used for systems of

equations and piecewise polynomial collocation methods as well.

However , their approach can lead to the inversion of very large

matrices . Although the matrices themselves are band or block band

matrices, their inverse is full. Also it is not always possible to

-10—

---- - -, ..
~~~ - ~~~~~~~~~~~ - -—-


f i nd an explicit form of the Green ’ s f u n c t i o n tha t will enable one

to convert the problem to an equivalent Fredhoim in t eg ra l equat ion .

Our method is to convert equation (1) in to an equ iva len t ‘!olterra

equation. Then we derive an explicit formula for the Green ’s func-

tion of that Volterra equation. Using the formula we construct a

numerical scheme to compute bounds on F’(x
0
)~~~ and x

1
—x
0 JI

for function f(t,y) which are polynomials in t and y . We are

using only spaces of continuous functions.

This has two advantages:

a) We can use local pol ynomial interpolation in order to produce

continuous functions as opposed to global C1 piecewise polynomial

functions.

b) Only the values of the computed solution have to be a good

approximation to the true solution and not to the derivatives.

Getting a good approximation to the solution and its derivative is

of course harder than obtaining a good approximation only to the

solution itself. The requirement that f(t,y) in equation (L)be a

polynomial in t and y is very restrictive. However , a large

number of problems that arise in app lications (most notably one

dimensiona l cases of Naviar Stokes equations), fall into that c-dt~~—

gory .

We also would like to note that our method can be made to work

for functions f (t,y) which are factorable functions of ~ and y.

f(t,y) can be approximated by Taylor series approximation and tI

error made by that approximation can be accounted for. However , we

do not treat that case and we leave it for further study.

-11- ~~~~~~~~~~~~~~~~~

=- - - -

~~~~~~~~~~

~ -



We conclude the introduction with an example of TPBVP that can

be treated by our method. The example looks simple but is far

from being trivial.

Consider the system of ordinary differential equations des-

cribing the steady f low of a f lu id contained between two parallel ,

infinite plane disks which are rotating about a common axis

iv
h + hh” + gg’ = 0

g” + hg’ - h’g = 0

h(0) = h’ (O) = h(l) = h’(l) 0

g(0) = H
0 

, g(l) = H
1

The above problems have attracted considerable attention.

In [27], McLeod gives a list of more than twenty references about

work concerning the above problem . Although the physically inter-

esting problem is when and 1H 11 are very large , existence

proofs are known for a very limited set of values of (0
0

1 H
1
), (see

Elcrat [14]). Moreover extensive computations have been carried

out and mu ltiple solutions had been observed (see Wilson and Schryer

[41 ] and the references there). However, the known theory cannot

assert the existence of such multiple solutions nor could it rule

them out .

One “nice ’ feature of the above equation is that it is q~ adratic

in the unknown functions. Therefore, F” is a constant ten~~ r.

Using our method we prove the existence of a solution for boundary

conditions outside the range for which analytical proof is known.

Actually, Kantorovich’ s theorem guarantees the existence of a solu-

tion for boundary values in some ball around the original boundary

values.

—12—

-

~

-- ~~~~~~~~~~~~~~~~~ 
-—

~~~~


1.2 The Theory :

In order to aoply Kantorovich ’s Theorem to the problem

(y ’ = f (t ,y)
0 < t < 1 (1)

L B
1

y (O) + B
2
y(1) w

— —

we use the following formulation:

Let C [O , l] n denote the space of continuous functions from [0 , 1] to

R
n
. Let r € R”1. We use ri to denote max r i . For f ~ C[0,l]~~.

1 <i < n
we define the norm of f by:

— —

j f II = sup f(t)I = sup . max (If . (t) I) .
0 < t < 1 l < i < n 1

We denote by C
0

[O ,l] ” the space

C0 [O , l] ’~ = ~g € C[O,l]
n

I g (0) = 0)

Clearly C [O , l] ’~ and C
0

[O ,l] ” with the norm are Banach spaces.

Let A be nxn matrix. We use A l to denote max (~ a . .1) .
l < i < n j =l 1]

Let W (t) be a nxn matrix valued function on [0,1]. We define the

norm of W by

lI w il = sup I W (t) i .
0< t< 1

Let f be a twice continuously differentiable function from R~~
1

to

R~. Define F:C[O ,l] n ~ C0[0,1] ’~ x R
r
~ by

(u(t) — u(0) — ftf(s u(s))dS
Fu(t)= (0 . (2)

LB1
u(0) + B

2
u (l) - w

Clearly solving for Fu = 0 is equivalent to solving equation (1)

F’ (x 0) : the Frechet deriva tive of F at x
0

is given by :

(v (t) — v (O) — f
t
f(s ,x

0
(s))v (s) d s

F’(x
0
)[v] (t) =

~~ 0 (3)
LB

1
v 0 + B

2
v(1)

it

-13-

_ _ --.- . ,

n
(sf . ~\I i i n n

where f (s,x) is the matrix \ —) . If Ti C C [0,1] ~ Rx L. l x ~ j i , j = 1 0

fl = (r(t)), the n v = F’ (x 0) 1[n J is the solution of

v (t) — v (0) — H ~ (s,x (s))v(s)ds = r (t)
X 0 (4)

~ B1
v (O) + B

2 ~~
l) = p

F”(x
0
) the second Frechet derivat .we is given by:

li t
(f (s ,x

0
(s))u(s))w(s)

F” (x
0

) fv ,w J (t) = ~ 0 (5)

(~~
2 f . ~

where f (t,x) is the tensor ~ 1
~ i,j,k = l ,...,n

xx I
‘- j k

Let x0 E C[O,l]~ be fixed and denote f(s ,x
0
(s)) by A(s). A(s)

is a nxn matrix valued function .

Let Y(t) be the nxn matrix that solves the following initial

value problem :r Y’(t) = A(t)Y(t)

S , 0 < t < l (6)

~~Y (O) = I

We are now ready to derive a formula for F’ (x
0
)
1

Theorem:

Let R B
1
+ B

2
Y (l)

F’ (x
0
)

1 exists if and only if R is nonsingular and

= Y(t)R
l
B
1f
t
Y

l
(s)A(s)r(s)ds

+ Y(t) (R
1
B
1
-I)f

1

— Y(t)R
1(B

2
r(1) + p) + r(t) (7)

Proof:

Since A (t) is continuous on [0,1] it is well known (see

Coddington and Levinson [8]) that Y(s) is nonsingular for all

—14—

s [0, 1] . So equation (7) is well defined provided R ’ exists.

le t w (t) = Y(t) f ~ Y
1
(s)A(s)r(s)ds + r (t) , then , w (0) = 0 and

0
t

w(t) — w (0) — f A(s)w(s)ds — r(t) =

Y (t) f ~ V - f ~ A(s)Y(s) f ~ V 1(u)A (u)r (u)du ds
— f A (s)r(s)ds =

0

(integrating the middle terms by parts)

= Y (t) i t V 1(s) A (s) r (s) d s — Y (t) f ~ Y
1
(u)A(u)r(u)du

0 0

+ f
t
Y(s)Y

1
(s)A(s)r(s)ds — f ~ A(s)r(s)ds = 0

0 0
therefore

w(t) — w(O) — f ~ A(s)w(s)ds = r(t)
0

Since Y(t) — Y (0) — f
t A (s) Y (s)ds = 0, for any a € R

n

0
v(t) w(t) + Y (t) c t is a solution to:

v(t) - v(0) - f ~ A(s)v(s)ds = r(t). (8)
0

Clearly any solution to (8) is of the form w(t) + Y (t) c z for some

~ E Rn . If v is a solution of equation (4) then

v(t) = Y(t) f ~ Y 1
(s)A (s)r(s)ds + Y (t) c t + r (t)

0
for some a € R~ . The condition

B1
v (0) + B

2
v (l) = P implies that

B
1

’L + B
2
[Y(l) ~

~l V
1
(s)A(s)r(s)ds + a} .i-r(l)] = p

he n ce

(B
1

+ B 2
Y (l)) a = p—8

2
[Y (l) ~l V 1(s) A (s) r (s) d s + r(1)]

hence

= -B [V(l) ~
l
Y 1(s)A (s)r(s)ds + r(l)] (9)

0

_ _ _ _ — -~~~~~ -
_

. -_ _

Therefore if R is nonsingular

= R 1{p - B
2

[Y (l) f 1
V

1
(s)A(s)r(s)ds + r(1)]} (10)

and

v(t) = ~ t) (f
t
Y
1
~~~ A~~~~~~~ d + R 1[p -B

2
V ( l ) f

1V 1( s ) A ( s ) r ( s ) d s

— B2
r(l)]} + r ( t )

= Y ( t ) R {(B
1+B2

Y ( l ) ) J Y ( s ) A ( s ) r ( s ) d S

— B 2
Y ( l) f

1Y 1(s)A(s)r(s)ds + p—B 2
r ( l ) }  + r(t)

= Y ( t )R lB1f
tV 1( s ) A ( s ) r ( s ) d s  — Y(t)R

1
B
2
Y(l)f

1
Y 1 (s)A(s)r(s)ds

+ Y(t)R 1(p—B
2
r(l)) + r(t)

= Y(t)R l
B
1f
t
Y

l
(s)A(s)r(s)ds

—Y (t)R
1
(R—B

1)f
1
Y
1
(s)A(s)r(s)ds + Y(t)R

1
(p—B

2
r(l)) + r(t)

Y(t)R l
B
1f
t
Y

l
(s)A(s)r(s)ds+Y(t) (R

1
B
1
_I)flY

l
(s)A(s)r(s)ds

+ Y(t)R
1
(p—8

2
r(l)) + r(t).

Conversely by virtue of the above computation, equation (9) has a

unique solution only if R is nonsingular. Q.E.D.

Remarks:

1) If we replace Y 1
(s)A(s) by —(Y

1(s)) ’  , we can rewrite equa-

tion (7) a s :

F l ( x ) l
(

t) ) = — Y ( t) R~~B1f
t
(Y ~ (s))’r(s)ds —

- Y(t) (R 
1
B
1-I)f

’(Y 1
(s)) ‘r(s)ds - Y(t)R

1
(B
2
r(l)+p ) + r(t) . (11)

2) Using the above equation we get

F’(x )
~~~ i ~ Ii~ I I {( Il l (Y

1(s))’Ids)max (1R 1B11 , 1 R
1B1-II)+IR

1B2I

:;

+ iR 1
I } + 1. (12)

-16-

.~~
.~ .‘~~~~~~~- ~ -- - —~~~~ - —--

~~~~~~~ 1~



1.3 Bound i ng the Constants of Kantorovich’s Theorem:

In order to construct an e f fec tive numerical scheme we assume

that the function f(t ,y) in equation (1) is a pol ynomial in t

and y.

We would like to note that all functions involved can be ap-

proximated by local Taylor series expansions and therefore the pro-

cedures we are about to describe can be used to compute the desired

bounds even if f is not a polynomial. The difference between the

exact equation and the local piecewise polynomial approximation can

be accounted for. In the present work we do not investigate this

possibility , and we leave it for further study. In any case as was

pointed out before, many problems that arise in applications are poly-

nom ials in t and y

In order to take into account the round—off error we are using

interval arithmetic. The use of interval arithmetic at the present

time is very expensive since one has to use simulated floating point

arithmetic. The ratio of speed between the hardware floating point

arithmetic and the interval arithmetic we are using is about 1:1000.

Although the scheme we are proposing does not require a large

volume of computation, the use of interval arithmetic makes the method

expensive to use . If one is not interested in actually prov ing the

existence of a solution and one does not wish to take round-off error

into account the use of double precision will suffice. We would like

to point out that in computing F” (x
0
)~~~ and x1-x0 11 we use

interval ar i thmet ic  onl y in order to take the round-off error into

account. Therefore,we do not get the pessimistic bound s that the

use of in terval  a r i thmet ic  can lead to.

—1 7—

.~~~-- - -- i ._ _ _
~~~~~~~~~~~~ 

.
~~~~~~~~~ -. .



1.3.1 Bounding I F ” (x) II .

I f  the function f(t,y) in equation (1) is a polynomial in t

and y and we choose our initial guess x
0
(t) to be a piecewise

polynomial functio’i, then f
xx
(t
~
x
o
(t)) will be a tensor of order 3

whose components are piecewise polynomial functions.

One way tc compute K (a bound on sup ( i I f x (t
~
X(t)) II)

x—x~~I < r

is to bound the nGrm of F (t,x (t)-I) where F is the interval
xx 0 xx

extension of f (see Moore [30])  and I is the interval [—r , r ] .
xx

[F ( t , x ( t ) - I ) ] .  is a piecewise polynomial interval function.
xx 0

In section (1.4) we describe how one can bound the norm of such

functions. Another way to compute K is to bound II f (t ,x0(t))II

and then to compute a crude bound on sup Il f xxx(t ,x(t))ii
x-x~ II <r

Since each component of f (t,x ) is a polynomial in t and x

it is not hard to compute a crude bound on f (t,x(t))xxx

L3.2 Bounding F’ (x
0
) 

h I

Let A (t) denote f
x
(t
~~

C
o
(t)

~~ 
Let Y(t) be the matrix solu-

tion of the initial value problem

Y ’ ( t) = A (t ) . Y ( t )
0<  t <  1

Y(0) = I

It is well known that Y 1
(t) exists and is the solution of:

z’(t) = —z (t)A(t)

Z(0) = I

Let V ( t )  and W ( t )  be matrix valued functions approximating Y (t)

and V 1(t) respectively. Assume V (0) = W(0) = I

Let E
1
(t) = Y ( t )  — V(t), E

2
( t) = Y 1(t) — Wit). E

1 
satisfies the

-18-

________________ - - --.~—.- ---- --- 
~~~~~~~1~ -


equation

E
1
(t) = f ~ A(s)E1(s)ds + X1(t) (13a)

where X
1
(t) = I — V(t) + j t A (s)V (s)ds also

F
2
(t) = ~~ E2(s)A (s)ds + X

2
(t) (h3b)

where X
2

(t) = I_ W (t) . - f t W (s) A (s) d s . Therefore

IE . (t) ~ lx . (t) I + f~ IA 5 I I E . (s) las i = 1,2.
i 1 o

In order to bound the norm of E . in terms of II X . II and II A ll
1 1

one can use the following well known lemma (See [8] Chap . 1).

Lemma (Gronwall inequality).

Let ~~~~~ be real piecewise continuous functions on a real

interval I = [a ,b],
~~~

> 0 on I and suppose that ‘It € I

< ~S’(t) + f ~ x (s)~~(s)ds .

Then

< ~‘(t) + f ~ x ( s ) ~P ( s )  exp (f
t 

x (u) du)ds.
0 5

The lemma implies that

lE 1(t) l ~~. lx~ (t)I + f
t J A ( s ) i J X . ( s ) i exp (f

t 
i A ( u ) I d u ) d s

xj~ {1 + f
tIA(s) i exp (f

t
IA () l d )d }

0 S

= II xjI . (1 + exp ( f
tlA(u ) l du)(f

t_
~~ exp(—f5 IA(u ) Idu)ds)}

= II {.l + exp(ftlA (u)idu)(l_exp(_J tIA (u)Idu))}
0 0

= ii x I ~ 
. exp ( f

t
iA (u) idu ) 

.~~. 
lx i II . exp(iI A li t)

The above estimate is very pessimistic and for A ll = 20, e 2° > 108

so the error bound will be very large . However, we can use this

estimate on small subintervals as initial bound for the error and

-- - .  

-19- 

-



then improve tha t bound , that IS: for u t u+h

I51(t) I E . (u) I + IX 1
(t )  - X ( U )  I + f

t
iA ( ) I ~IE~ (s) Ids

hence U

l I E 1 
( .)  II ~ (I E . (u) I + Il x~ 

(~ ) - X . ~~ II ) . eh IA II (14)

where the norms are computed on the interval [u ,u+h]. If h is small

the above estimate is not a gross estimate.

Improving the bounds on Ii E J I
Since E . ( t )  satisfies equation ( 13) , one has , by the theorem

in section (1.2)

E
1
(t) = V (t) 

0
f~ V 1(s)A (s)X 1(s)ds + X1(t)

= (V(t) + E
1
(t)) f

t(w(s) + E 2
( s ) ) A ( s )  X1

( s)d s  + X
1
(t)

hence

IE 1(t )  I ~ (IV(t) I + 1E 1(t )  I )  • f
t( jW(s) I + E

2
(s) I ) IA (s) I IX(s) Ids

+ Ix 1 t 1
Similarly

IE 2(t)l ~~(IW (t) I + IE 2 (t)l)I
t(lV(s) l + }51(s )I )IA (s)IIX 2(s)Jds

+ iX 2
(t)l

Using the above estimates we arrive at the following algorithm:

Notation:

Let 0 = x <x ... < x = 1 be a div ision of the interval
1 2 n+l

[0,1].

h . = x . - x .
1 i+l 1

a . > sup IA (t) I
x <t< x .i— — i+1

> sup ix (t) — X ( x . ) l
1~~~~ 1 1

x • t< x .
— 1+1

-20—

- — - . —



~~. 
sup x2 (t )  — X

2
(x.)!

x . <t<x .
1— — i+l

V . > sup i V ( t )  I
x . < t< x .

1— — i+l

w . > sup W (t) I
x < t< x .

1— —

z~ > sup IX 1
(t )  I

> sup I x~ t i
We want to compute i , 2. . such that

> ~~~~~~~ f E1(t)x . < t< x .
1— — i+l

> ~~ip I E2(t) I
x <t< x .

1— —

define = = 0.

Then by estimate (14) if
h~a.0 1 19.. = (9, . + r.)e

i—h 1

h .a.
‘~0 ‘0 “ i i

= (9.. + r.)e
1 i+l 1

then

> sup 1E 1(t ) I
x . < t< x
1— —

> sup lE 2(t) I
x . < t< x

1— — 1

also if
i—h

= (V . + 9.? ~ (w. + L .)z , a .h .
i • l  J J J

+ (v + 9.0) (w. + ~~~~~~~~~~ a.h . + r.
1 1 1 1 1 1 1

and

_  _  _ _ _  

L.



i—l
‘1

= (w. + Q •) ~ (v . + £..)z . a .h . +
1 1 1 -i=l ~ ~ J J J

0
i- (w.+2~.)(v.+i.~ )z. a h ~ + r .

1 1 1 1 1 1 1  1

then

2 1 > sup IE (t) I and ~l > SUf) IE (t) Ii — X , < t ’ Z x . 1 1—  x . < t < x . 2— i+l 1— — i+l

0 1  . ~0~~ lSo we set 9.. = min(9~.,9..) and 9~. = min(2.., 9..). We also would like
1 1 1 i 1 1’

to bound E~~(t) because we need to compute a bound on

J
1
IY

1 ( s ) ) ’  Jds. Since E~~(t) = A(t) E
2
(t) + x ( t)  it follows tha t

II E~ II ~ II A l l II E2 11 + II x~I I
The above estimates enable one to compute good bounds on

II V ii f 1 1 (V
1
(s))’ Ids. First one computes numerically the values of

0
Y and V

_i 
on a sequence of points. Then interpolate these points

by a local polynomial. This local interpolation scheme will give V

and w . Then using the above algorithm one can compute rigorous

bounds on II~ ll and f
1
1(Y

1(s))’ Ids.
0

1.3 .3  Computing a Bound on R 1 II.

In the previous section we showed how one can “mpute

6
1 ~ 

iV(l) — V (l)i . Let

D = B
1 

+ B
2
V(l)

then

~ 18 2 16 1 = 6
2

If ID 1
I 62 

< 1 then R 1 exists and

a) I R ’I ~ [Dl

1 — I D I  6
2

—22—

.4



2
— l —1 I D I •6

2b) —D I — l- ID I 6 2
In general it  is impossible to compute exactly.  Onl y a good

approximation to D
1 

can be computed. Let C be a matrix such

that J I—CD I = 6
3 

< 1 then ID
1

I <

Remarks:

Computing D
1 

by Gauss elimination might not yield a very

good approximation to D
1
. However , if we compute a matrix C such

that II-CD 1 < 1 , this approximation can be improved by Newton ’s

method. The condition I-CD < 1 is enough to guarantee that the

i terat ion will converge. The refore,one can compute an approximate

inverse accurate to machine precision .

1.3.4 Computing a bound on Ti = II x1-x011 .

An obvious bound on n is F ’(x0)
1

II IIF(x 0) II , that is, the

norm of the Green ’s function times the residual. If the norm of the

Green’s function is not very large the above estimate is good enough.

However , this is an overestimate and n is usually much smaller.

One way of obtaining better bounds on n is to use the explicit

form of the Green ’s function in order to compute x
1
(t) , that is:

Let v(t) = x
1

(t )  — x
0
(t) , r (t) = x~t)_f

t f(s,x0(s))ds 
- x

0
(0)

then by the theorem in section (1.2)

v (t) = Y(t) f
t (y 1

(5))
l 
r(s)ds + Y ( t ) a  + r ( t )

0
where z is given by equation (10). Therefore,

-23-



v(t) = (V(t) + E (t)) ( j
~ 

( W ’ ( s ) + E ’ ( s ) ) r ( s ) d s  + ~ + E } + r(t)
1 2

0

= v ( t )  { f~ W’(s)r(s)ds+cz} + r(t)
0

+E ( t )  {f
t V 1(s)’ r (s)ds+a}

+ v(t) f ~ E ’(s)r(s)ds + E
2 a

where ~t is the computed value of a and E = ~—& . Therefore

II vl I < v (s) f~~~ W ’(s)r(s)ds+ali
0 (15)

+ Ii E~ II ~~
l

I~j~
l
~~~~,ld l I r 11 + 11 all ) + ~~j (IIE~ Il ~II r lI + t E l  + II r II

In ordei. to compute a, one can use the following :

Let C be the computed approximation to R 1 and E
c

= R 1-C.

By equation (10) (assuming p=O)

a = —R
1
B~V (1) f 1 V 1(s) ’ r (s) d s — R 1B 2

r (l) =

= —(R
1
B
1
—I) ~

l
Y
1
(s) ’ r(s)ds — R~~B2

r (l) =

= -{[(C+E)B -I]f
1
(W’(s)+E ’(s))r(s)ds + (C+E)B r(l)}

c 1
0

2 c 2

= — {(cB
1
—I)f

1
w ’ (s)r(s)ds + C B

2
r(l)}

_
~
E
c
B
1[f

1
W ’(s) r (s) d s + f

1 E (s)r (s)ds] + E
c
B
2
r(l)}

= a + E
a

A bound on I E I is given by:

IEa l~~ lE cHI B ii u i 1
1w ’ s r s d s l ~~ . Il~ II . il r ll

+ I E l . I B r (l) i (16)c 2

Note that since V ,W ,r~ are all piecewise polynomial functions ,

v is a piecewise polynomial function and all the necessary

—24—

.“.—~~ —- ‘ ~~ ~~~‘ ~---— — - r

computations can be carried out. The ways one can compute bounds on

I E I , I I E 1 Ii ’ l l E ~ II and f
1i Y 1(s) 1ids are already described in the

previous sections. Therefore,by using estimates (15) and (16) one

can compute a bound on n

Another possibility for computing Ti is to solve numerically

the linear TPBVP:

v ’ = Av+r

B1
v (0) + B 2

v (l) = 0

where r(t) = f(t,x0
(t)) — x(3(t) and A (t) = f (t ,x0

(t)) . A bound

on II x1—x0Il will be q = li v II + h F ’ (x 0) 111 I i q II where

q(t) = v(0) + f~ A (s) v (s) d s — v (t).

In order to get a better bound than Ti = F’ (x0
)~~ II 1IF(x 0

) II
one has to take the discretization parameter smaller than the one

used in the original equation or use higher order method (or both).

Then, hope fully, i~ I I will be much smaller than Ii F(x
0
) II . Since

we have a bound on F ’(x 0) 1
11 we know how small q II has to

be in order to get a realistic bound on Ti

_ _ _ _ _ _ _ _ _ _ _ _________________________ -.

1.4 Bounding the Norm of Piecewise Polynomial Functions.

In order to cr~mpute bounds on the quantities described in the

preceeding sectiens one needs procedures for bounding the norm of

piecewise polynomial functions on a f in i te interval . The polynomials

may have int~ rval coefficients.

In this section we are considering the above problem. The dis-

cussion is soirewhat elementary. But finding effective procedures

for bounding the range of piecewise polynomial functions is important

enough to warrant our consideration . We wish to f ind a good balance

between speed and accuracy . We are only considering robust algo-

rithms , that is: algorithms that are guaranteed not to give erro-

neous answers.

We begin by showing that bounding the range of interval poly-

nomials can be accomp lished by bounding the range of at most 4 poly-

nomials.

Let P(x) =
~

A .x’ be a polynomial of degree n with inter-

val coefficients. We wish to compute II P~ on the interval [a ,b].

Case i) 0 < a

In that case let q (x) and a(x) be defined by

q(x) =

i~O
sup (A .)x’

q (x) =
~ i n f(A .) x 1

i=0
Clearly V x ~ [a ,bl a(x) < P (x) < q (x) and ~~~ are the best

possible functions sa t isfying the above inequality .

—26—

- —-~~--~~- -
~

_
t -

--

Case ii) b < 0

Define
n

— r 1 1q(x) = L sup ((—1) A .)x
i=0

1

n •
• i i 1

j(x) = j~ i n f ((— 1) A)x
i=0

again . x E (a,b] aix) P(x) < q(x)

Case iii) a < 0< b

Define
(n
I ~‘ 1 1
I /, sup ((—1) A) x a < x < 0

• 1 — —
— I i=O
q(x) =

\ n

I ~ sup (A .)x
1

Li= 0

(n

~ inf ((—l)~ A .)x
1

a < x < 0

~
,

2.

I ~ inf (A .)x’ 0 < x < b

L i=0 1 — —

Therefore , by bounding, at most, 4 polynomials , one can compute bounds

on the norm of P(x). In our programs all polynomials are defined

on the interval [0,h] where h is the size of the subinterval

Therefore , only case i) applies. In practice we resort to the above

reduction only if the width of the coefficients exceed a prespeci fied

tolerance.

1.4.1 Computing a “Rough” Bound on Piecewise Polynomial Function.

If the interval on which the polynomial pieces are defined are

small and the piecewise polynomial func tion itself is not very small,

one can use the following effective procedure:

Assume that the polynomial p(x) is defined on the interval

[0 ,h).

-27-

a) Determine upper and lower bounds on P’ ix); ~ > P’ ix) -,

x € [0,h].

One way to compute q,~ , is as follows:
n-h

if P’(x) = ~ b .x
1

let h . = max (O ,b .) b . = min (0,b .)
• 1 -.1 1 -.1

and set
n-i . n-l

q = b
0

+ ~ b .h
1

, a = b
0

+ ~ b .h
1

i=l i=l

b) if P’ ix) > 0 or P’ ix) < 0 determine II PhI by evaluating

P(x) at the appropriate end point.

c) If a < 0 < q , then set

II ~lI = max (P(0)+hqI,~~P(0)+h~~)

A better bound can be computed by making use of the value of P(h).

0

Figure 1.

Set hi~ II = max(lP (o)+Ah
~ I , I P (o)+(l_x)haI) where

—
P(h) — P(0) — ha

It is our experience that the above procedure gives bounds with

enough accuracy for bounding piecewise polynomial functions which are

—2 8—

I
__

- - -~~~~~~~

not small and the right order of accuracy of the bound s on the

norms of p iecewise polynom ial functions that are very small.

We f ind the above procedure to be adequate for computing bounds

on hi A ll , II V II, II w ll and for computing bounds on 1W-I-f WAdsf (
0

and IIv-1- fAvds . The reason being that we only need to compute
0

bounds that agree with the best possible bounds up to one or two

digits and we do not need the best possible bounds. In many cases

the above procedure is adequate for bounding

tII v(t) — v(0) — f f (x ,v (s))dsll
0

1.4.2 Computing a Good Bound on the Norm.

In order to compute a good bound on the norm of a polynomial

P(x), one can bracket the real zeros of P’ (x) inside very small

intervals. Then one uses step c) in the previous method in order

to bound the norm. One well—known method for bracketing the real

zeros of a polynomial is the Sturm Sequences method (See for example

Isaccson and Keller [19)). Another way to bracket is to use an

algorithm suggested by Dussel and Schmitt 1 131 . First,one f inds an

integer r such that the rth derivative of p , ~~~ does not have

a zero in the interval. Using the fact that ~~ft 1)
ix) can have at

most 1 zero one can easily find out if p~~~ U does have a zero or

not. If it does, the zerc can easily be bracketed since ~ (k_l) is

monotone . In the kth step, assuming that the zeros of p 1
~~~

1
~ (x )

are bracketed , one can use the sign of ~~~~~~ ix )  on each subinter-

va]. in order to bracket the zeros of ~
(r_k_l) 

(x).

We have chosen to follow the idea of Dussel and Schmitt, but

instead of using an interval version of the Bisection Method as they

—29—

1_
---? 

.- .- -.-- ,... . 
_ _ _ _ _



do , we use an interval version of Modif ie d Regula Falsi algorithm .

(For details of Modified Regula Falsi algorithm see Conte and

de Boor [ 9 ] ) .  We use the above method only on intervals of which

the function is ttonotone. In the case of multiple zeros we are using

a simple gross bound . In that case the function is very flat and a

good bound on the zeros of the derivative is not needed. A careful

examination of all possible cases shows that the above procedure

gives guaranteed lower and upper bounds for the zeros. The details

of the above algorithm are given in the next section.

One last consideration . The intervals on which each polynomial

is defined are small . Theretore , the contribution to the norm from

the high powers is very small. One can bound the contrthution from

the low powers and then add the contribution from the absolute value

of the high powers . This way the degree of the polynomials that one

has to bound is reduced. Note that it is not essential to compute

the bound s very accurately . Accuracy of two— three digits is good

enough.

1.4 . 3 .On Bounding the Range of a Polynomial.
k

Let I = [a ,b l ,  a > 0, be a finite interval and Pix) = ~ a x 1
i=0

a kth degree polynomial. In order to bound the range of P on I

we bracket the zeros of P’ , that is: We find a sequence of points

a < x < x ... < x = b such that on each interval (x .,x .— 1  2 n i i+l

P’ (x) > 0, P’ ix ) < 0 or P’ (x) may have a zero. We try to make

the interval on which P (x) may have a zero as small as possible.

Once we have bracketed the zeros of P’ inside small intervals,

we use the procedure described in the proceding section in order to

—30— 

~~~. ~~
— .. .

-
... ~~

.
—~~~~~- —

bound the norm of the polynomial.

In order to bracket the zeros of P’ we use recursively the

fo llowi ng elementary fact (Fall’ s theorem).

Fact: If f ’ (x) has no zeros in an interval , then f has at most

one zero in that interval.

We start by finding an integer j as small as possible such

that ~~ i)
ix) has no zeros in I . Clea ly there is at least one

such j namely j = k.

If j = 1, then we are done. That is P’ ix) has no zeros in

I . Otherwise , we assume we have a sequence of points a = x
1

< x
2

< x = b and a list of integers S ,S , •.., S such thatn 1 2 n-h

s . {—l , 0 , l} and

If S. = 1, ~
(i) ix) > 0 on [x .,x .~~1

I.

If s. = —
~~

p
~~~~ x~ < 0 on [x .,x . ] .

1 1 i+l
i i )If  S . = 0, P ix )  may have a zero in [x ., x . 1.

1 1 i+l

We always try to make the intervals with possible zero smaller than

some tolerance c

Given such a sequence and a list of integers , we compute a new

sequence of points a = y1 < y2 < ... < y = b and a list of inte-

gers V
1
,V
2
,. .,V

1 
such that

V . = 1 if ~ (i—l ) (x) > 0 on

V . = -l ~f 
~ i~ —l) (x) < 0 on

(j — l )
V . = 0 if P may have a zero in [y.,y.~~1

].

Clearly at most k-i such steps are needed in order to trap the

zeros of P’ ix) on I

— 31—



We now describe the procedure by which we construct the se-

quen ces 
~~~~~~~~~~~~~ 

V
1l V2~~•~~~I Vm_ l with the aid of the se-

quences x
1
,x2

,. .. ,x; S
1
,S2,. . . ,S

1
.

-

For convenience we denote

~~~ by f and p
~~~ 

by f ’

We scan the interval I from left to right. On each subinter~

val [x . , x .] we determine if f has a zero. If it does not we
1 i+l

proceed to the next subinterval . If it doe s have a possible zero ,

then we bracket that zero in an interval as small as possible (up to

a tolerance c). In order to take round—off error into account, f

is evaluated in Interval Arithmetic. So at any point x that we

evaluate f we get two numbers fix) , f(x) such that

fix) > fix) > f(x).

One has to consider the following different cases :

Case 1 S.=1.
1

In that case f is strictly increasing. Therefore, f has a

zero in [x . ,x .] if and only if fix .) < 0 and fix .) > 0
1 i+1 1 — i+l —

Case l.a

If f(x.) > 0 or f(x .) < 0 f does not have a zero in
—)_ i+l

[x. ,x.
1 1+1

Case l.b

If f i x .) < 0 and fix .) > 0 , then f has a zero in the
i — i+l

open interval (x . , x .) .
1 i+l

We can trap that zero inside a small interval by a disection

method (Modified Regula Falsi) which we will describe later.

_ _ _ _

-32-

_ _ _ _ _
-. - - .- . . - - -~~-

Case l .c

fix.) < 0 and fix.) > 0 but fix.) > 0
— 1 — — i+l i —

x x . +1

There are two different possibilities .

1) i = 1 in that case set y
1

= x1 V
1

= 0. Since f i x .) < 0

and f(x.÷1
) > 0 we can use the disection method to find y such

that fiy) > 0 and y is as small as possible (that is: y is a

machine representable number and f(y—c) <0). Set y
2

= y, v
2

= 1

and go to the next interval since f has no zeros in the interval

[y, x.~~1]

2) i > 1 In that case we have y . such that f might have a

zero to the right of y . and V . = 0. Again we can find y as

small as possible by the disectiori method such that f(y) > 0 . Set

=
~ , V ÷1 = 1 and go to the next interval . Note that if

f (x .) = 0 we can take ~ = x~ , where x+ is the smallest mach ine
— 1 1 1

representable number greater than x. because fix.) < fix .) and
1 — 1 — J

f is strictly increasing on [x .,x.41].

Case l.d

f (x .)< 0 and fix .) > 0 but f(x .) < 0
1 i+l — — i+l —

4 . . -
L.

1) If I = 1 set y
1

= x1, V1 = -l and f ind y as large as pos-

sible such that f(y) < 0 . Set y
2

= y and V
2

= 0

2) If I > 1 we have y. such that fly.) < 0 and V . = —1 . Find
3 3 J

y as large as possible such that f(y) < 0 and set y .~1 =

V . =0.
3+1

Case l .e

f(x.) < 0 < fix .) and f(x .) < 0 < fix .) .
— 1 — — 1 — i+l — — i+1

If i = 1 then set y
1

= x1, v1 = 0 and go to the next interval.

If i > 0 then go to the next interval. (Remark : this is a very

unlikely possibility).

Case 2 S. —l
1

This case is almost the same as Case 1. The only difference is

that the function is strictly decreasing.

Case 3 S. = 0.
1

Case 3.a

There is no possible zero in the previous interval or i = 1.

In that case we compute f ([x ., x.÷1 1) by interval arithmetic.

If there is no zero we continue with the next interval . If there is

a zero in f ([x .,x. 1) then
i i+l

If i = 1 then y. = x1 , V
1

= 0 and if 0 ~ [f (x
2
), f(x

2
)]

set y
2

= x2, V2 = sign(f(x
2
)). Otherwise go to the next interval.

If i > 0 set y .~~1
= x. , V~4.1

= 0

If 0 ~ (f(x.~1f (x .~1] set y
~~ 2

= x~~1 , V
2

= sign (f(x.~ 1
))

else go to the next interval.

-34-

Case 3.b

There is a possible zero in the previous in te rva l .

If 0 ~ [f(x.),f(x.)] set y. = x . and V =
— i+l i+l j+ l i+l j+ 1

si gnif(x.
1
)), otherwise go to the next interval .

Remark: The above procedure does not give the tightest possible

intervals in cases 3.a and 3.b. However , since in these cases the

fur.ction is very f la t in that neighborhood,one does not really need

a very tigh t bound on the zeros of the derivative . In [13] Dussel

and Schmitt describe how one can use an interval version of the bi-

section method to get tight bounds on the zeros even if the function

is not monotone . One can use that procedure if one wishes to

1.4.4 The Dissection Algorithm.

The algorithm we use is a Modified Regula Falsi algorithm (see

Conte and de Boor [9 fl. We use two versions : one for functions that

take interval values, and the other for functions that take real

val ues. Both algorithms differ from each other by minor details.

We assume that we are given an interval [a,b] such that

f(a) . f i b) < 0 . At each step we have FA and FB such that

FA•FB 0. We compute A by: A = l/il-FA/FB). Clearly 0 < < 1.

In orde r to avoid problems of convergence and overflow -underflow ,

if A < 6 we set A = 6 or if 1—A < ~ we set A = 1—6 . 6 is a

givori small number , 6 > 0. Afte r we determine 0 < A < l~ we compute

a point x in the interval (a ,b) by x = A•a + (1—A) b. If

0 f(x), then we have found a zero , otherwise depending on the sign

of f i x), we replace a or b by x and FA or FB by fix) .

— 35—

If a (or b) had been replaced in the previous iteration and is

being replaced again we set FB = FB/2 (or FA FA/2). The above

step prevents the possibility of approaching the zero only from one

side . If b-a < c then we are done . Otherwise , we compute new A

and so on... . In the case where f is an interval valued func-

tion , If 0 € f(x), then we check if 0 4 fix —
~~

-) and

o 4 f(x + ~—); if this is true we take (x -
~~

-, x + ~
) to be the

z 2 2

desired interval.

If 0 e fix —
~~
-) or 0 E f(x +

~~
-) then we usa the same proce-

dure for f and f in order to find the intervals containing zero

of f and f . Using these intervals and tne sign of f’ we deter-

mine an interval containing the zero of f

In case fix) = 0, (x ,x+] is an interval containing a zero

of f and the same is true for f . ix is the biggest machine

number smaller than x and x+ is the smallest machine number

greater than x). The above algorithm is linearly convergent since

the interval is reduce d at least by a factor of 1 — 6 at each

iteration arid at most by a factor of 6 . However , if 6 is small
—2 —3 • .(say 6 = 10 or 10) the algorithm behaves like a quadratic-

ally convergent algorithm. In some sense this algorithm is in

between the Bisection method (6 = 4) and the modi f ied Regula Fal si

(6 = 0).

—36-

CHAPTER 2

A POSTERIORI ERROR BOUNDS - THE I~ i LEMENTATION

2.1 On the Numerical Procedures .

In this section we describe the numerical procedures we use in

order to compute upper bounds on the constants ~f Kantorovich’s

theorem.

Let us assume that we are given a numerical solution to equa-

tion (1) computed at a sequence of points a = x
1

< x
2 ~

-

~~~~~
• <

= b. As an initial guess we take the piecewise polynomial function

defined as follows: On each subinterval [x., x . ) ,  i =
1 i+l

x
0
(t) is the sixth order polynomial that interpolates the solution

and its derivative at the points x~ , x . ,x . . The values of the
1 i+l i+2

derivatives are computed via the differential equation . On the in-

terval [x ,x +1], x
0
(t) is the sixth order polynomial interpolat-

ing the solution and it’s derivative at x , x , xn— h n n+l

First the residual is computed , that is:

r ( t )  = x
0
(t) - x

0
(a) — f ~ f(s,x0(s))ds .

On each subinterval x0
(t) is a polynomial. Since f(s,y) is a

polynomial in s and y , on each of the subintervals r(t) is

also a polynomial . Using the polynomial coefficients of r(t) and

the algorithm described in section (1.4.2) a bound on II ~~ is

computed .

Second , the fundamental and inverse fundamental solutions are nu-

merically computed . One has to solve 2n Initial Value Problems :

n for Y(t) and n for (y
_l
(t))

T
. The values of lit) and

(Y h
i t) )

T are computed at the same sequence of points that x
0

it )

— 37—

0
.—

~

-- .~~~~ -~~~~~-- —



was computed.

We take V(t) to be the piecewise polynomial function approxi-

mating Y(t), and w (t ) to be the piecewise polynomial function

approximating \ 1i t) .  V ( t ) and W i t )  are computed with the same

interpolation scheme used to construct. x
0
(t).

The algc rithm described in section ( 1 . 3 . 2)  is used to compute

bounds on II E , I I  , II E2 II II ~II f
b

1~
-1 (5), Ids and 1E 1

(1) I.
The bounds on 1x 1 11 11 x2 11 (of equation l3a , l3b) as well as

the bounds on II V II , lw II . II W ’ and .11 A ll are computed using

the rough bound described in section (1.3.2)

Third, ~ B
1 

+ B
2 

V (b) and C R 1 are computed. Uring

the bounds on IE(l) l and Ci bounds on IR ’I, I R
’

- C I

max (IR~~B1i , l R ~~B1-II) and 1R
1B2 1 are computed (see section

(1.3.3)).

The facts that the problem has separated boundary conditions

arid that

(I 0 ’~ (0 0
B
1 — 

~~~~~ o ’ ‘ B
2 — I I 0

implies that:

a) IB1 I = lB2 I = 1

b) if Y(b) = (~ ~
) ,

where a,8,y,6 are n/2 x n/2 matrices , then

1

R

~~~ 

-1 

and R_ l (  
8-1)

R
Br( l 

), R B
1
-I 
= (8

_l
~ ~)and R B = 12 

~~~~~ 0

—38—

Therefore, max (IR~~B1 l , R
1
B
1
—I j) = l~

1 t~ + 1 and 1R
1B2 1 =

• Using the above bounds the bound on 1 F ’ (x
0
)
1 II is com-

puted by formula (12).

The bound on II x0—x1 1j, r~ / is given by

= II ~li 1
b Ii 1(s) Ids - (I 8

1
~ i + 1) + I~

_1
I) II r h + 1 1 r h .

Since the problem has simple boundary conditions one makes sure the

in i t ia l guess x0
(t) satis fies the boundary conditions. Therefore,

one can assume p = 0. The above bound for n is smaller than the

bound I F ’ (x e) 1 11 . r j j

2.2 Function Representations.

The numerical solution to equation (1), the fundamental solu-

t ion and the inverse fundamental solution are continuous functions .

However , these functions have a discrete representation inside the

computer. We are using two types of representations :

a) Point-value representation: In this representation the

function is represented by a sequence of points (the knot sequence)

a = x
1

< x
2

< ... < X = b and a sequence of values y1 ,. .. ,y
which are the double precision values of the function at

We use the same knot sequence to represent x
0
it), the approximate

solution of equation (1), V(t), the approximate fundamentdl solu--

tion and Wit), the approximate inverse fundamental solution .

b) Piecewise polynomial representation: In this representa-

tion the function is represented by the knot sequence and a 6~ n

array of numbers. On each subinterva l (x.,x . 1. the function is
i. i+l

a 6th order polynomial p (t)=) a . . (t—x .)3 . This polynomial inter-
j=0

palates the values of the function and its d~ rivative at the points

—39—

-...- --,*— -~~~~~~~ ~~~~~~~~~~~~~ - -~~— ---

x .,x . 1 1 x .2 .

Since computers compute with a finite, discrete set of numbers,

it is impossible in general , to compute the exact coeff ic ients of

the polynomials. Moreover, the coefficients, usually, are not ma-

chine representable numbers. On the other hand the initial guess

x
0
(t) , V (t) and Wit) are to be continuous functions. However , one

cannot guarantee that the computed functions are continuous . To

overcome this d i f fuculty we are using interval arithmetic (see [30])

Instead of computing with one floating point number the computation

is done with two. One of the numbers is guaranteed to be smaller

or equal to the number we need and the other , greater or equal to

it. Therefore,one actually has two sets of polynomial coefficients .

The f i r s t is a machine representable set of n umbers . Each of them

is guaranteed to be greater or equal to the corresponding exact co-

e f f i c i en t. Similarly each floating point number in the other set

is guaranteed to be smaller or equal to the corresponding exact co-

efficient. Therefore, one has two polynomia’s; one which at any

point is greater or equal to the exact polynomial, and the other is

smaller or equal to it. Although it is impossible to compute the

exact polynomial itself , by bounding the range of these two poly-

nomials one gets a bound on the range of the exact polynomial .

(See also section 1.4.)

—40-

~~~~~~~~~ ~~
—- —

~~~~~~~~~~~
-- •-——

2 . 3 The Interval Ar i thmet ic package.

As was said before we use interval arithmetic in order to take

the e f f e- t of round-off error into account.

The interval ari thmetic package we have constructed is based

on the Mul t iple Precision Package (See Crary [10]) . The interval

precision package was designed to be used with the AUGMENT precom-

piler. All subroutines that use Interval or Multiple arithmetic are

writ ten in “extended” FORTRAN (See [11]), and are translated by

AUGrIENT to standard FORTRAN. For the use of AUGMENT see Crary [hlJ.

The package is similar to the one written by Yohe [44] . However ,

the package is a “ scaled down ” version ; only routines that are

needed were constructed. Y~ he ’ s package was not used because we

needed more precision than that package provides . Yohe ’s package

is written in single precision arithmetic (approximately 8 decimal

di gi ts) . Our package uses 4 words per floating point number.

(About 32 decimal digits.) Therefore, each interval n umbe r takes 8

words .

The subroutines and functions available are :

1) The arithmetic operations: ~~ — , *~ /

2) Comparison operators: .LT . , .LE., .GT., .GE., .EQ., .ME. .

3) Functions: INF , SUP , ABS, TSIGN , COMPOS, MAX . INF , SUP ,

ABS and COMPOS are the usual ones TSIGN is defined by :

(1 if 0 < a

TSIGN ([a,b]) = 0 if a < 0 < b

L-l if b < O

—41—

and MAX is defined by:

MAX (~ a ,b] ,j c , d]) = [f ,f] where f = max (b ,d).

4) Conversir~n functions:

There are conversion functions from Integer, Double Precision ,

and Mul tiple to Interval and from Interval to Double percision and

Integer. Type conversion has to be explicitly invoked and is not

done automatic~l1y . That is, the statement Al = D where Al is

of type Interval and D is Double precision , is not legal. The

function C T X (.) converts its argument to Interval , CXTD convert s

Interval to double precision and CXTI converts Interval to Inte-

ger. Since the Multiple precision package is used to construct the

interval package the description deck of the multiple package has to

be submitted to AUGMENT in front of the Interval description deck .

The description decks of Multiple and Interval are given in the

Appendix.

—42—

2.4 The Subroutine Package.

2.4.4 General Information.

This package of subroutines enables one to bound II
and II F’ (x0) i ll Most of the computation is done in multiple and

interval ari thmetic. Howeve r, the user does not have to be very

knowledgeable about the inner working of the multiple and interval

packages. The main subroutine APOSTR does not have multiple or

interval arguments in its calling sequence .

There are five, user supplied , problem dependent subroutines.

Two subroutines out of the five use Interval arithmetic. In order

to be able to write these routines the user has to know how to use

AUGMENT (see (11]) and how to use a few polynomial manipulation sub-

routines . The polynomial subroutines , the interval package and the

description decks are provided with the package . The underlying

arithmetic is provided by the multiple precision package and is

available on MRC*LIB. , that is Mathematics Research Center ’s re-

locatable library . Since the multiple package is written in UNIVAC

1100 series assembler , the package is not portable and no attempt

was made to make it portable . We tried to make the package applic-

able to a large set of problems . Howeve r , the package was desi gned

as an experimental tool to test some of our ideas . It is not and

was not meant to be a genera]. purpose production code.

We now give a short description of the subroutines in the pack-

age . A comp lete l i s t ing of the subroutines , the extended FORTRAN

source code as well as the Standard FORTRAN code produced by

—4 3—

_ _ - - - - - -r - - . -
~~~~



AUGMENT is given as an appendix on a microfiche card.

2.4.2 Problem Independent Subroutines.

APOSTR: This is the main subroutine . It sets up the work space

for each of the subroutines, calls the subroutines that perfo rm the

d i f fe ren t  parts of the algorithm and computes the f inal  bounds .

See calling sequence description and explanations in the next sec-

tion.

INLIZ: Ini t ia l ization routine sets up some needed constants.

SETKNT: This subroutine converts the double precision kn .t se-

quence to interval valued knot sequence.

GREENF: This subroutine puts the values of the solution into com-

mon block /SPLCFF/ and also computes the values of Y(t) and

~~ 
l
(t))

T 
at the knot sequence. It uses subroutine DDESUB in

order to solve the initial value problems.

CMPORS: This subroutine computes a bound on the norm of the resid-

ual , that is: A bound on II x0
(t )  — f

t
f(s,x

0
(s )ds — x0 (a) II

BDGRFC: This subroutine implements the algorithm described in

section (1.3.2). It computes bounds on I IY (t ) Il f
b

I Y  
1( s ) ’  Ids , II A l l ,

Ii El il , ~~~ and

CMRINV: This subroutine computes an approximation to R
1 wher e

R = B
1 
+ B

2
Y(b). The approximation is f irst  computed by Gauss

elimination and then improved by Newton ’s method. The subroutine

computes bounds on II R 1 11 , II B1R 1
11 and II B2R 1

11 using the

method described in section (L3.3) (see also section (21)).

t
Only the MRC report has the microfiche card for obvious reasons . A

copy of the microf iche  card can be obtained from the author .

—44—

— — --—- - ~-.•=—-— ~~~~~ j~~~~~~~~ r- - -
~~ —V



LEQRMR: This subroutine computes the residual of V , that is:

Vit) - f
t
A(s)V (s)ds — Via). (Recall that Vit) is the piecewise

polynomial approximation to Y ( t ) . )  LEQR1~IR is used by subroutine

BDGRFC .

LQERMR: This subroutine computes the residual of W , that is

Wi t) — W(a) + W(s)A(s)ds . (Recall that Wit) is the piecewise

polynomial approximation to Y it)). LQERMR is used by BDGRFC.

CBSTPP: This subroutine converts point value representation of a

function to its piecewise polynomial representation. It computes

the coeff ic ients  of the polynomial interpolating the function and

i t ’s derivative at 3 consecutive points .

PPNRM: This subroutine computes a tight bound on the norm of a

polynomial in a given interval . It uses subroutine PNORN which

is the implementation of the algorithm described in section (1.4.2).

PNORM: This subroutine implements the algorithm described in sec-

tion (1.4.2). It isolates the zeros of the polynomial’s derivative

inside very small intervals and then bounds the norm of the poly-

nomial. It uses subroutine LOCATE in order to bracket the zeros of

the polynomial’s derivatives and subroutine NORM 1 in order to com-

pute bounds on the norm of the polynomial.

NROM 1: This subroutine is given a sequence of intervals containing

the zeros of the polynomial’s derivative using this information it

bounds the polynomial ’s norm.

LOCATE: This subroutine is part of the algorithm for getting a tight

bound on the norm of a polynomial. This subroutine gets a sequence

of points where the kth derivative of the polynomial is either

—45—

a



positive or negative or may have a zero. Employing the method

described in section (1.4.3) subroutine LOCATE computes a sequence

of points where the  ( K — l ) t h  derivative is positive or negative or

may have a zero. The intervals that could possibly contain a zero

are made smaller than a given tolerance.

BISECT: This is the dissection algorithm described in section

(1.4.4 ). This subroutine brackets the zeros of sup or inf of

an interval valued polynomial . The polynomial is assumed to have a

zero in the given interval . It is also assumed to be monotone.

BSCINT: The same as BISECT only it is the interval version of the

dissection algorithm.

PMXNRM: This subroutine computes a bound on the uniform norm of a

polynomial matrix. The bound is given by: max a.. . The
l< i < n j=l ~

bounds on the terms II a .,. II are computed by the “rough bound’

method described in section (1.4.1).

UBEXP: This subroutine computes a bound on e
a 

where a is a

positive interval number.

VCrINT: This subroutine integrates piecewise polynomial functions.

That is: it is given f 1  u(s)ds and the polynomial coefficients

of u ( t) ,  x. < t < x~~1, and it computes the polynomial coeffi-

cients of f
t u (s)ds , x . < t < x~~1. u is a vector valued func-

tion .

PPVLtJ1: This subroutine computes the double precision value of the

solution at any given point.

DIVDIF: Divided differences subroutine. It is used by PPVLU1 to

compute the interpolating polynomials.

—46-

_ _ _ _ _ _ _ _ _ _ _  - 
--

~~~~~~~~~~ —-~~~~~~- -- ~~~~~ 
~~-r - -

IDVDIF: The same as DIVDIF only in inte rval ari thmetic. It is

used by CBSTPP in order to compute the polynomial ’s coefficients .

DDESUB: This subroutine solves initial value problems in double

precision. This subroutine uses Gragg ’s modif ied midpoint rule

with Bailirsch—Store ’s rational extrapolation method . It is es-

sentially the same subroutine as the one provi de d by Madison

Academic Computing Center. A modification was made to enable the

routine to store the solution ’s values at any given sequence of

points not necessarily equally spaced. For details about the use

of the subroutine see [49].

2.4.3 Polynomial Manipulation Subroutines.

In order to facilitate the manipulation of polynomials several

subroutines we re constructed. All polynomials have interval coef-

f ic ients. The following subroutines are provi ded:

SUBROUTINE PLYNEG (K ,A ,B)

This subroutine computes B = -A , A and B are Kth orde r

polynomials.

SUBROUTINE PLYADD (K ,A,B,C)

This subroutine computes C = A+B, A ,B and C are Kth orde r

polynomials.

SUBROUTINE PLYSUB(K,A ,B,C)

This subroutine computes C = A-B, A , B, and C are Kth order

polynomials .

SUBROUTINE IPY MU L (K l ,K2 ,A ,B ,C)

This subroutine computes C = A x B A is Kl th order poly-

nomial , B is K2th order polynomial and C is iKl ÷K2 - l) th orde r

—47—

polynomial .

SUBROUTINE PLYDRV (K ,A ,B) -

This subroutine computes B = A’ , A is Kth orde r polynomial .

2.4.4 Problem Dependent Subroutines.

There are five problem dependent , user supplied subroutines.

Two of the subroutines compute with interval ar i thmet ic and three

with double precision .

SUBROUTINE FUNC (XI,SOL,FSOL,L,K,KF)

This subroutine H is given the polynomial representation of

x0
(t) on the interval [x I (l) , x I i 2)) and it computes the poly-

nomial representation of f (t ,x0
(t)) . The solution ’ s polynomials

are Kth orde r and are interval valued.

The parameters:

xl:- Interval valued vector of dimension 2. It gives the end

points of the interval on which the polynomial representation is

valid.

SOL :- Kx L interval array with the coefficients of the poly-

nom.ials.

FSOL:- ~~ xL array with the coefficients of f (t , x0 i t)) .

L : — The size of the system.

KF:- The f i rs t dimension of FSOL .

SUBROUTINE SETA(K ,L,XI ,SOL,A ,KA)

This subroutine is given the polynomial representation of the

solution and it computes the polynomial representation of Alt) =

f (t ,x it)).x 0

—48—

The parameters:

K,L,XI,SOL:~- The same as in FUNC

A:- A KA~LXL interval array with the coefficients of Ait).

Remarks.

1) The above subroutines should be translated with AUGMENT.

2) The user could use the polynomial manipulation subroutines

to compute f(t ,x
0
(t)) and A(t)

3) Note that the polynomials are of the form
K

P iT) =
~

‘
D(J)*(T_XI(l))**(J_l)

.3= 1

Therefore, the polynomial representation of the independent variable

t on the interval [XI(l), XI (2)] is (XI (l) , l,O ,...,0).

SUBROUTIN E DEFUNC CT , Y , DY , STOR , IFL~ G)

This subroutine is given the value of the solution at T in

Y and it computes fiT ,Y) and stores it in DY. This subroutine

is used in computing the piecewise polynomial representation of the

solution .

The parameters:

T:- Point of evaluation .

Y:— L dimensional double precision vector.

The value of the solution at T

DY:- L dimensional double precision vector contains the

values of f(T,Y).

STOR:- Not used.

IFLAG:- Not used.

—49—

—
— -

~~~~~~~
-- - _

~~~~~~~
‘
~ ~~~~~~ -~~~~~~~r - - - -

SUBROUTINE DERIVS (T, Y, DY , STOR , IFLAG)

This subroutine is used in orde r to compute the fundamental

solution . It is given in Y the values of one column of Yit)

and in DY the values of A(t)Y.

The para~eters:

T,Y ,DY:- The values of Y(I), I = l,...,L have to be put in

STOR (See [49] for saving options).

IFLAG:- not used.

SUBROUTINE TRDERV (T , Y ,DY , STOR , IFLAG)

This subroutine is used in order to compute (Y l
it))

T
. it is

given in Y the values of one column of (Y l
(t))

T
and stores in

DY the vector _AT(t)Y.

The parameters are the same as in DERIVS.

The d i f ferent ia l equations that Y (t) and iY l
(t))

T satisfy,

depend on the solution x0
(t) . There fore , the values of the solu-

tion at the knot sequence are put into an array in the common

block /SPLCFF/LXI ,C (.) . LXI is the number of points the solution

is computed at and C is LXIxL double precision array with the

solutithi values at the knot sequence .

In order to facilitate the computation of x
0
it) at any point

a subroutine is provided:

SUBROUTINE PPVLU1 (C ,LXI ,YHT ,X)

The parameters:

LX I : Number of points in the knot sequence .

C:- LXIXL array with the values of the solution at the knot

sequence .

—50—

— — —--- —~~~~~~~.

L: The size of the system.

YHT : L dimensional array with the values of the solution

at x.

X: Point of evaluation.

2.4.5 The Subroutine APOSTR.

The main subroutine is APOSTR . It’s calling sequence is:

SUBROUTINE APOSTR (KA ,KF,L,NPT,SOLTN,FUNC,SETA ,B1 ,B2,NRMINV ,ETANRM ,

WRXSPC).

The parameters:

KA:- The order of the polynomials in the matrix A (t) =

f (t,x it)).x 0

KF : The orde r of the polynomials in f (t , x0
(t))

(Remember that x0 it) is 6th order piecewise poly-

nomial function) .

L: The size of the system of differential equations.

NPT;- The number of points in the knot sequence .

SOLTN:— NPTxL double precision array with the values of the

solution x
0
(t) at the knot sequenrs.

FUNC : Problem dependent subroutine .

This subroutine is given the polynomial representation of

x
0
(t) and it computes the polynomials f(t ,x0

(t)) for calling

sequence . See section (2.4.4).

The subroutine FUNC should be declared external in the calling

program.

—5 1—

SETA:- Problem dependent subroutine .

This subroutine is given the polynomial representation

of x
0
(t) and it computes the matrix polynomial A(t) =

For calling sequence see (2.4.4). This sub-

routine should be declared EXTERNAL in th calling program.

Bl ,B2:-- LXL double precision arrays with the coefficients

B
1

and B
2
.

NRMINV:- Double precision value of the bound on Ii F’ ix0)
1 I1

ETANRM:- Double precision value of the bound on II x1—x0 Il
WRKSPC:- Double precision work space array.

The dimension of WRKSPC should be at least

2*NPT*(L*L+2)+4*L*L* (38+3*KA).

Please note

The knot sequence is not part of the calling sequence . It

must be put into the common block /DPSTEP/ STEPS(.) prior to the

cal l to APOSTR.

—52—

_ . . . -- - -

2 .5 Examples.

In this section we give two examples of computational existence

proofs. Analytical existence proofs for these problems are not

known .

2.5.1 Example 1.

Consider the following two-point boundary value problem :

cy ” = (y2 — (t—l)
2)y ’ 0 < t < 1 (El)

y(O) = A , y(l) = B

The above problem was suggested and analyzed by Howes and

Parter as a medel problem for nonlinear problems having a contin-

uous locus of singular points (see [17]). They studied the asymp-

totic behaviour of solutions to this problem as c -
~~ 0~~. It is

not hard to show that the above problem has at least one solution

for any value of c > 0. However the existence of multiple solu-

tions was not ruled out. Moreover ,Howes and Parter showed that if

0 < B ~~~~~~ , < A < 1 there are at mest three limit solutions

as C -~~ 0
+

; y E A , y~ B andy E7T . Indeed Francis Sutton [36]

computed, using finite differences, three solutions for c > 0

small , thus implying that all three possible limit solutions are in

fact obtained.

We also have found three distinct numerical solutions in that

range . Our numerical solutions were obtained by a collocation

method. The subroutine LOBATO by deBoor and Weiss [4] was used to

obtain the numerical solutions. Taking A = .96, B = .001 and

= 1/15 the above aposteriori error analysis was used to estab-

lish the existence of (at least) three distinct solutions .

—5 3—

Moreover , guaranteed error bounds were obtained .

Of course, the theory does not rule out the existence of more

sol utions for c > 0. However , the theoretical results of Howes

and Parter combined with Sutton ’s computational results and our

existence results for c 1/15 seem to support Sutton ’s conje cture

that Equation (El) has exactly 3 solutions for all 0 < E < c
0
, for

some c
0

> 0 .

Although c = 1/15 is not very small Equation El is already

“s t i f f ” . As a matter of fact solution 3 (see figure 2) was

“stiffer” than solutions 1 and 2. In order to get reasonable error

bounds we had to modify the original programs so that it would be

possible to subdivide the interval into unequalsubintervals. The

bounds on the residual were reduced by 4-5 orders of magnitude by

putting more points in the interval where the function and it’s

derivative change very fast. Solutions 1 and 2 were computed using

201 points and solution 3 using 301 points. The bounds we obtained

are given in Table 1. We now turn to our computations:

Let us rewrite equation (El) as a first order system with

R = 1/c.

d (l
”
\ (~2

y
2 ,) =

~~R(y~
- (t-l)

2)y
2

(1
0\
\(Yl

(O) ~
+
(0

0\

\
(Yl

(l)”s
\ =

(A

\~o 0)~~~y2
(0)) ~~l o) ~~Y2(l))

the matrix of partial derivatives is given by:

_54..

—- -- -- -~~~~~~~~~~~~ - - - - - -,,-
~~~~

- 
_ _ _



0 1
A (t) 

2 2
\~.,2Ry

1
y2 R (y

1 
— (t—l)

The second partial derivatives are:

2 2 2

____ — 
~~f1 _ ~ 

—

and

~
2
f ~

2
f

= 2Ry
2 

~ a y 2 
= 0, ~y1~

y
2 

= 2ry1

there fore

1 1
su~ II F” (x) II < 2R (2f Iy 1(s) Ids + 

f ~y2
(s) Ias + 6 R r

IIx—x 0IHr 0 0

Therefore, the bound on the second Frechet derivative can be com-

puted by the above formula. Since y
1 

and y
2 

do not change sign

on [0,1) the above integrals can be computed exactly (Remember

that y
1 

and y
2 

are piecewise polynomial functions.).

In f i gure 2 we have plotted the three different solutions .

The error bounds we obtained are :

K B h r
0

1 77.5179 2.40683xl0
9 

4.4769x10
2 

8.3526 xl0~~ 2.4069x10
9

2 60.9082 l.24323X10
9 

5.0692xl02 3.838640~~ l.24326xlO~~

3 37.98871 5.39276xl0
9 

l.7473xl03 3.5795xl0
4 

5.3937-’~l0~~

Table 1

—55—

-v



1. I

II

III

0 1

Figure 2

2.5.2 Example 2.

This example was mentioned in the introduction . These differ-

ential equations describe the flow between two parallel infinite

disks rotating about a common axis. The equations are :

h
iv 

+ h h” + g g ’ = 0
(E2)

g” + h g ’ - h’ g = 0

h(0) h’ (0) = hil) = h’ (1) = 0

g( 0) = 
‘ 

g( 1) = .

Although the above problem has attracted considerable attention

(See McLeod [22) and the references there), existence proofs for

solutions outside a small set of values of (%~Q.~) are not kncMn

(see Elcrat [141 and McLeod (22]).

—56-.



Hastings proved existence provided and are suffi-

ciently small .

Elcrat , using a fixed point argument proved that : If

a) 0
1 

c [_Q
~
,0] and 0 

~~
. 

~~ 
< C

or 

b) 0
1 

€ (0,O
o
] and — C2

where C = ~-(2)
5
(exp(.25) + exp (~.) - l)

l
~
2 

1.5 then - equation

(E2) has a solution .

McLeod and Parter [281 proved existence of solutions for the

counter rotating case = -Q.~). They proved existence of solu-

tions for all values of > 0. Proof of existence in all other

cases is not known .

Many people have computed solutions outside the range where

the existence of solutions is known. Moreover , multiple numerical

solutions were obtained. However, none of the computational papers

give any error analysis . Although many of these computations prob-

ably give reasonable approximation to solutions of equations ( E 2 ) ,

there is at least one case where a computed solution was proven to

be incorrect. (See McLeod and Parter (28].)

By using an aposteriori error analysis , the existence of a solu-

tion , outside the range where the previously known results apply ,

has been guaranteed. Although we have not proven the existence of

multiple solutions (when [2
o and are large enough) , we believe

that with enough time and computing power (money) one could use our

method to establish the existence of multiple solutions . As a by-

product of Elcrat’s proof the solutions he obtains are “monotone”

—57—



in the sense that g ’ is of one sign. On the other hand, McLeod

and Parte r showed t~.at if there is a solution in the case where

and 
~l 

are : positive , large enough and far apart, g’ of that

solution must hange sign. Moreover, numerical solutions where g’

does change sign were obtained (for example see Cerutti [6]). It

will be interesting to prove the existence of such solutions .

Note that the above problem is “stiff” and it gets “sti f fe r ”

as IO O I and ~~~~ grow.

This numerical solution was computed with subroutine LOBATO at

101 equally spaced points. We computed with = 7 and 01 
= 1.

Note that ~
2 

- = 48.

The bounds we obtained are:

K B h

4 2.0l54x10~~ l.60437xl0
4 

.1293406 2.l6597xl0
6

dem

Elcrat

McLeod-Parter

Figure 3

In Figure 3 we have plotted the values of and 0
1 

for which

existence proofs are known .

_ _ _ _ _  

-58- 

_



2.6 Conclusions, Remarks, etc.

In this  work we have demonstrated a way to compute aposteriori

error bounds for polynomials two—point boundary value problems.

Some of the diff icul t ies  of other methods were overcome . However ,

the problem is by no means completely solved. We list below prob-

lems and questions left to be answered:

a) The bound on n = II x1-x011 we use, is not the best possible

one . We suggested two other methods for computing n . These

methods have to be fur ther  investigated. Both methods su f f e r  from

some difficulties. The first method uses the explicit form of the

Green ’s function and requires the manipulation of high degree poly-

nomials. The second method looks more promising, however, a large

amount of work may be necessary in order to make the residual , that

is x
1
(t) — f

t
[Ais )x

1
(s) — r(s)]ds very small . In any case more

experiments are needed before one could obtain better methods for

aposteriori error bounds.

b)  We have chosen to interpolate the solution x
0
(t), Y(t) and

Y
1
(t) by 6th order polynomials. However , there are no compelling

reasons for doing so. More experiments are needed to obtain some

ideas and to gain some insight into good strategies for choosing

erpolation schemes.

c) The implementation of interval arithmetic , we use , is very slow.

A necessary condition for making interval arithmetic practical for

routine use is having the arithemtic done by hardware and not by

software . The prospects , in the near future , of having interval

arithmetic as a standard hardware option are not good, However,

~



a new generation of microprogramable computers may make the use of

interval arithmetic practical.

d) We use interval arithmetic in order to take round—off error into

account. If one wishes to prove the existence of solutions one is

forced to take round—off  error into account . However , it is our

experience that computations with double precision arithmetic give

the same results and round—off errors have neçligible effects . Thus ,

our method could be used to compute reliable eri ’r bounds although

the results would not be completely rigorous existence proof.

e) The size of the residual or the size of II x
1
-x
0 Jj on each

subinterval could be used to decide how to redistribute or refine

the subdivision points . More experiments are needed in orde r to

find strategies based on the above information. Also one should

compare these methods with other methods suggested in the literature

(see [21, [7], [45], [48]).

f) As was said in the introduction our method could be extended to

problems that are not polynomials. If the function f(t ,y)  of

equation (1) is a factorable function of t and y (see Part A of

our thesis), then , since x
0
(t) is a piecewise polynomial function,

f(t,x
0

(t) )  and A (t) = f ( t , x0
(t) ) ar e piecewise factorable func-

tions . Since one knows the Taylor series expansion of x
0
(t) on

each subinterva l , one can compute Taylor series approximations to

f ( t , x0
( t ) )  and A ( t )

If f ( t) is the approximation to f(t ,x
0

( t ) )  and Alt) is

the approximation to f(t,x
0
(t)), then :

-60-

_______________________  - 
~~~~~~~~~~~~~~~ — ---~~~~~~

.
~~~~~t------ 

_____  ~ - --



i ) Using interva l techniques (see Moore [30] ch . 10) one can

bound iIf( t)-f(t ,x0
(t))I} and Alt) — Alt) II . Also if one takes

enough terms in the series expansion and the subintervals are small

enough, these bounds will be small.

ii) Since fit) is a piecewise polynomial function we can use

it in order to compute an approximation to nt )

Recall that r(t) = x
0
(t) — x0 (a) 

— f ~ f ( s ,x
0
(s))ds. If r (t) =

x0
(t) — x0

(a) — f ~ f( s ) d s  then n it )  — r ( t) = _ f
t(f(s ,x0is)) —

f ( s ) ) d s  there fore

1 r~ < II n il + (b—a) • f ( t ,x0
(t ) ) — f ( t )  II

iii) Similarly , A (t) can be used to compute approximation to

X
1
(t) and X (t).

Recal l that

X
1

(t) = V ( t) — V ( a )  — A ( s ) V ( s ) d s
a

If

X
1
(t) = V(t) — Via) — f ~ A ( s ) V ( s ) d s

then

II Xl X
l

jj < k - Al l  . (f
b 

V(s)ids)

The same way , if X
2

(t) = W ( t )  - W(a )  + W ( s) A ( s ) d s  then

Il X 2~
X2 II IA -A ll .( f b

i W ( s ) I ds)

In turn the bounds on and X
2 can be used to compute

bounds on E~~j and Ii E2~ . (See section ( 1 . 3 . 2) ) .

Therefore , an algorithm , similar to the one used for polynomial

equations , can be used for aposteriori error analysis of factorable

two-point boundary value problems .

g) It is not hard to see how one can extend our method for problems

wi th nonlinear boundary conditions .

—61—



REFERENCES

1. I. Babu’
~ska and w. C. pheinboldt . A Postenioni Error Estimates
for the rinite Element Method. Comp. Sci. Tech. Report
TR-581. Univ. of Maryland, September 1977.

2. C. deBoor nnd B. Swartz. Collocation at Gaussian Points. SIAN
J. !.umen . Anal . Vol. 10, No. 4, September 1973, 586-606 .

3. C. deBoo:. Good approximation by splines with variable knots ,
II. Conference on the Numerical Solution of Differential
Equations , Lecture Notes in Mathematics , Springer , Vol.
363, 1973.

4. C. deBoor and R. Weiss. SOLVEBLOK: A Package for Solving
Almost Block Diagonal Linear Systems , With Applications
to Spline Approximation and the Numerical Solution of
Ordinary Differential Equations. Math. Res . Center TSR
#1625. Univ. of Wisconsin-Madison . May 1976.

5. J. H. Cerutti. Collocation for Systems of Ordinary Differential
Equations. Comp . Sci. Dept. University of Wisconsin—
Madison Tech. Report #2 30, December 1974.

6. J. H. Cerutti; High Reynolds Number Flow Between Rotating Co-
axial Disks; A Numerical Experiment. Comp. Sci. Dept.
University of Wisconsin-Madison Tech Report #249, April
1975.

7. J. thnistiansen and R. D. Russell. Error Analysis for Spline
Collocation Methods with Application to Knot Selection ,
Math, of Comp., to appear.

8. E. A. Coddington and N. Levinson . Theory of Ordinary Differ-
ential Equations , McGraw—Hill, 1955.

9. S. D. Conte and C. deBoor. Elementary Numerical Analysis. An
Algorithmic Approach . McGraw Hill 1972.

10. F. D. Crary . Multiple Precision Arithmetic Design With an
Implementation on the UNIVAC 1108. Math . Res. Center
TSR #1123. University of Wisconsin—Madison , May 1971.

11. F. D. Crary. The AUGMENT Precompiler I , User Information .
Math. Res. Center TSR #1469. Univ. of Wisconsin-Madison ,
December 1976 .

12. D. M. Cruicksh an k and K. Wrig h t . Computable Error Bounds for
Polynomial Collocation Methods, to appear in SIAM J. of
Nun. Anal.

—62— 

~~
-•-—r -- —- —--

~~~~~~
—- — . —_-

13. R. Dussel and B. Schmitt. Die Berechnung von Schranken für

den Wertebeniech eines Polynorns in einem Iritervall .
Computing 6, (1970), 35—60.

14. A. R. Elcrat . On the Swirling Flow Between Rotating Coaxial
Disks . Journal of Diff. Eq. 13, (1975), 423—430 .

15. P. Hartman . Ordinary Differential Equations , Hartman 1973.

16. P. Henrici. Discrete Variable Methods in Ordinary Differential
Equations.

17. F. A. Howes and S. V. Parter. A Model Nonlinear Problem Having
a Continuous Locus of Singular Points. To appear in
Studies in Appl. Math.

18. E. L. Ince. Ordinary Differential Equations . Dover , 1956.

19. E. Isaacson and H. B. Keller. Analysis of Numerical Methods .
John Wiley and Sons , 1966.

20. L. V. Kantorovich and G. P. Akilov. Functional Analysis in
Normed Spaces. Pergamon Press, 1964.

21. H. B. Keller. Numerical Methods for Two-Point Boundary-Value
Problems . Blaisdell , 1968.

22. H. B. Keller. Approximation Methods for Nonlinear Problems
with application to Two-Point Boundary Val ue Problems .
Math, of Comp . Vol. 29, No. 130. April 1975 , 464—474 .

23. H. B. Keller. Numerical Solution of Two-Point Boundary Value
Problems . SIAN Regional Conference Series in Applied
Math. #24, 1976.

24. M. A. Krasnosel’skii , et. al. Approximate Solution of Operator
Equations, Wolters—Noordhoff, Groningen , 1972.

25. J. N. Lyness and J. J. Kaganove. Comments on the Nature of
Automatic Quadrature Routines , ACM-TOMS Vol. 2, No. 1,
March 1976, 65—81.

26. M. A. McCarthy and R. A. Tapia. Computable A Posterioni L
Error Bounds for the Approximate Solution of Two-Point
Boundary Value Problems . SIAM J. Numer. Anal . Vol. 12 ,
No. 6 , December 1975 , 919—937.

27. J. B. McL.eod. Swirling Flow - A Survey. Math . Res. Cente i
TSR #1473. Univ. of Wisconsin — Madison . January 1976.

—63—

28. J. B. McLeod and S. V. Parter. On the Flow Between Two
Counter-Rotating Infinite Plane Disks. Arch . Rational
Mech . Anal . 54, 4 (1974), 301—327 .

29. R. E. Moore . On Computing the Range of a Rational Function of
n Variables Over a Bounded Region. Computing 16, (1976)
1—15.

30. R. E. Moore . Interval Analysis , Prentice—Hall , 1966.

31. S. V. Parter. A Posterioni Error Estimates . Comp . Sci. Dept.
University of Wisconsin Tech. Rept. #214. May 1974. In
Numerical Solution of Boundary Value Problems for Ordinary
Differential Equations , A. K. Aziz , Ed. Academic Press , NY.

32. L. B. Rall . Computational Solution of Nonlinear Operator
Equations . John Wiley and Sons , Inc., 1969.

33. L. B. Rall and R. A. Tapia. The Kantorovich Theorem and Error
Estimates for Newton ’s Method. Math . Res. Center TSR
#1043, Univ. of Wisconsin—Madison . February 1970.

34. S. M. Roberts and .3. S. Shipman. The Kantorovich Theorem and
Two-Point Boundary Value Problem. IBM J. Res. Develop .
10 (1966) , 402—406 .

35. P. D. Russell. Collocation for Systems of Boundary Value
Problems, Numer. Math. 23 (1974), 119—133.

36. F. Sutton . Personal communication .

37. T. D. Talbot. Guaranteed Error Bounds for Computed Solutions
of Nonlinear Two-Point Boundary Value Problems. Ph. D.
Thesis, Computer Science Department, University of
Wisconsin-Madison , 1968.

38. R. A. Tapia. The Weak Newton Method and Boundary Value Prob-
lems. SIAN J. Numer. Anal . Vol. 6 , No. 4. December 1969.

39. R. A. Tapia. Newton ’s Method for Problems With Equality Con-
straints. SIAM 3. Numer. Anal. Vol. 11, No. 1. March 1974.

40. G. M. Vainikko . Galerkin ’s Perturbation Method and the General
Theory of Approximate Methods for Nonlinear Equations .
USSR Comp. Math . Physics, 7 (1967), 1-41.

41. L. 0. Wilson and N. L. Schryer. Flow Between a Stationary and
a Rotating Disk With Suction. 3. of Fluid Mech . to appear.

42. J. M. Yohe. Best Possible Floating Point. Math. Res. Center
TSR #1054. Univ. of Wisconsin-Madison . March 1970.

—64-

~~
—

~~-,- — — ~~~~~~ -~~~~~~
. -

43. J. M. Yohe . Software for Interval Arithmetic: A Reasonably
Portable Package. Math. Res. Center TSR #1731. Univ.
of Wisconsin-Madison. March 1977.

44. J. M. Yohe. The Interval Arithmetic Package. Math . Res.
Center TSR #1755. Univ. of Wisconsin-Madison. June 1977.

45. A . B. White, Jr. On Selection of Equidistnibuting Meshes for
Two-Point Boundary-Value Problems. To appear.

46. P. E. Zadunaisky. On the Estimation of Errors Propagated in
the Numerical Integration of Ordinary Differential Equa-
tions. Nuiner. Math , 27, (1976), 21-39.

47. V. Pereyra. Variable Order Variable Step Finite Difference
Methods for Nonlinear Boundary Value Problems . Confer-
ence on the Numerical Solution of Differential Equations,
Dundee 1973. Lecture Notes in Math. 363. Springer 1974.

48. V. Pereyra and E. G. Sewell. Mesh Selection for Discrete
Solution of Bouniary—Value Problems in Ordinary Differ-
ential Equations , Numer. Math. 23 (1975), 261—268.

49. Double Precision Differential Equation Package, Reference
Manual for the 1110 Academic Computing Center. Univ. of
Wisconsin-Madison . August 1975.

50. .3. B. McLeod and S. V. Parter. The Non-Monotonicity of Solu-
tions in Swirling Flow. Math. Res. Center. TSR #1551.
Univ. of Wisconsin-Madison . October 1975.

—65—

SE (R I T Y C L A S S I F I C A T I O N OF T HIS PA GE (When Data Enter.d)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

r R T NU M B ER 2. GOVT ACCESSION NO. 3. RE C IPIENT S C ATALOG N U M B E R

182 ___________________________________
4. T I T L E (end Su b t i t l e) S TYPE OF REPORT & PERIOD COVERED

Summary Re port - no specific

A POSTERIORI ERROR BOUNDS FOR TWO-POINT reporting period
BOUNDARY VALUE PROBLEMS 6. PERFORMING ORG. REPORT NUMBER

7 AUT HOR(.) 8. CONTRACT OR GRAN I NUMBER (.)

Gershon Kedem DAAG2 9 -75 -C-O024~
”

8. PERFO RMING O R G A N I Z A T IO N NAM E AND AD DRESS 10. PROGRAM ELEMENT. PROJECT , TA SK
j AREA & WORK UNIT NUMBERS

Mathemat ics Research Centery University of
610 Walnut Street Wisconsin #7 - Numerical Analysis
Madison , Wisconsin 53706 __________________________

I I CONT t~C 1MG OFFICE NAME ANO AO DR ESS 12. REPORT DATE

U. S. Army Research Office January 1978
P .O. Box 12211 13. NUMBER OF PAGES

Research Triangle Park, North Carolina 27709 65
14. M ONITORING .‘.GENCY NAME & ADDRESS (If different f rom Controlling Offi ce) IS. SECURITY CLASS. (of thi. report)

UNCLASSIFIED
ISa. DECLASSIFICATION /DOWNGRADING

SCHEDUL E

16. OISTR IBUT ION STATEMENT (of thu Report)

Approved for public release ; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ab.traci enI.r. d In Block 20, if different item Report)

18. $ U P PL E M E NT A R Y NOTES

19. KEY WORDS (Cont inue on revere , aid. if ne. ..eary end Identify by block number)

Two-point boundary value problem , a posteriori , error bounds .

20. A B S T R A C T (Continue on revere . .Id. II n.c.e.asy aid Id.nuiiy by block number)

Consider a general Two-Point Boundary Value Problem (TPBVP):
y ’ (t) = f(t ,y) a < t < b
B

1
y(a) -f B

2
y (b) = w

—

where f : F ~
14J ~n f E C~~, B and B are n~ n matrices and w €
is shown how one caA bound a2posteriori the error made in the n umer~

ical -~~~L I I t ion of the (TPBVI~. The error bounds obtained are rigorous and include
the truncation and roundoff error. In addition, the computations establish ~~~~~~~~~~~~~~~~~

DD ~~~~~~~ ~~~~~~~~~~~~~ OF I NOV 65 IS OB SOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (*).en bet. Ent.,.d)

4 ?
, - —

~~~ ~~~~ .,‘ L’i~~I.,C ~~~~i~~L( ’ M

-
~~~~ 

-— ;_
~~~~~~_ -~e___ ~, -~--- -~~~ — —



the existence of solutions to the TPBVP.

Numerical schemes are developed for the case where f(t ,y ) is
a polynomial in t and y . Examp les are given of computational
existence proofs for problems where analytical existence proofs are
not known .

- ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ —~~--.~~-- — —- --~~~~ ..


